skip to main content


Search for: All records

Creators/Authors contains: "Schwarz, Cara E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The way high school chemistry curricula are structured has the potential to convey consequential messages about knowledge and knowing to students and teachers. If a curriculum is built around practicing skills and recalling facts to reach “correct” answers, it is unlikely class activities will be seen (by students or the teacher) as opportunities to figure out causes for phenomena. Our team of teachers and researchers is working to understand how enactment of transformed curricular materials can support high school chemistry students in making sense of perplexing, relatable phenomena. Given this goal, we were surprised to see that co-developers who enacted our materials overwhelmingly emphasized the importance of acquiring true facts/skills when writing weekly reflections. Recognition that teachers’ expressed aims did not align with our stated goal of “supporting molecular-level sensemaking” led us to examine whether the tacit epistemological commitments reflected by our materials were, in fact, consistent with a course focused on figuring out phenomena. We described several aspects of each lesson in our two-semester curriculum including: the role of phenomena in lesson activities, the extent to which lessons were 3-dimensional, the role of student ideas in class dialogue, and who established coherence between lessons. Triangulation of these lesson features enabled us to infer messages about valued knowledge products and processes materials had the potential to send. We observed that our materials commonly encouraged students to mimic the structure of science practices for the purpose of being evaluated by the teacher. That is, students were asked to “go through the motions” of explaining, modeling etc. but had little agency regarding the sorts of models and explanations they found productive in their class community. This study serves to illustrate the importance of surfacing the tacit epistemological commitments that guide curriculum development. Additionally, it extends existing scholarship on epistemological messaging by considering curricular materials as a potentially consequential sources of messages. 
    more » « less
  2. Abstract

    Many conversations surrounding improvement of large‐enrollment college science, technology, engineering & mathematics (STEM) courses focus primarily (or solely) on changing instructional practices. By reducing dynamic, complex learning environments to collections of teaching methods, we neglect other meaningful parts of a course ecosystem (e.g., curriculum, assessments). Here, we advocate extending STEM education reform conversations beyond “active versus passive learning.” We argue communities of researchers and instructors would be better served if what we teach and assess was discussed alongside how we teach. To enable nuanced conversations about the characteristics of learning environments that support students in explaining phenomena, we defined a model of college STEM learning environments which attends to the intellectual work emphasized and rewarded on exams (i.e., assessment emphasis), what is taught in whole‐class meetings (i.e., instructional emphasis), and how those meetings are enacted (i.e., instructional practices). We subsequently characterized three distinct chemistry courses and qualitatively examined the characteristics of chemistry learning environments that effectively supported students in explaining why a beaker of water warms as a white solid dissolves. Furthermore, we quantitatively investigated the extent to which measures of incoming preparation explained variance in students’ explanations relative to enrollment in each learning environment. Our findings demonstrate that learning environments that effectively supported learners in explaining dissolution emphasized how and why salts dissolve in‐class and on assessments. Changing teaching methods in an otherwise traditionally structured course (i.e., a course organized by topics that primarily assesses math and recall) did not appear to impact the sophistication of students’ explanations. Additionally, we observed that learning environment enrollment explained substantially more of the variance observed in students’ explanations than measures of precollege math preparation. This finding suggests that emphasizing and rewarding the construction of causal accounts for phenomena in‐class and on assessments may support more equitable achievement.

     
    more » « less